Fault tolerance in dynamic
distributed systems

Pierre Sens

Delys Team
LIP6 (Sorbonne Université/CNRS), Inria Paris

Pierre.Sens@lip6.fr

Outline

Fundamental abstractions for distributed algorithms

Modeling dynamic systems

Fault tolerant algorithms in dynamics systems : some results
and open issues

Agreement problems

e Fondamental abstraction to build reliable services

~

clBlA
State
Agreement machine
C/B|A o]
replication
ClB/A

agreement on order of operations

Agreement problems: consensus

1 value proposed by each process

Every correct process decided
the same proposed value

Validity: Any value decided is a value proposed

Agreement: No two correct processes decide

differently

Termination: Every correct process eventually

decides

Other agreement problems

all correct processes try to agree on some set of
proposed values

* k-set agreement
 Agreement: At most k values are decided.
* Validity: Every value decided must have been proposed.
* Termination: Eventually, every correct process decides.

Generalization of consensus (k=1)

* set agreement: k=n-1

Traditional assumptions

* Connectivity
— © ={pl,p2, .., pn} known processes
— n processes strongly connected (no partition)
* Time
— Synchronous links (known bound on transmission
delays)
— Asynchronous links (no bound)
* Failures

— Crash, recovery, Byzantine

A fundamental result

“Impossibility to solve deterministically the
consensus in a asynchronous networks with only 1
crash failure” [Fischer-Lynch-Paterson 85]

The idea: impossible to distinguish faulty hosts from
slow ones

N

?

Circumvent FLP impossibility

4 approaches:
— Probabilistic (probabilistic consensus, e.g., Ben-Or)

* Possibly no termination
— k-agreement

* Arelaxed consensus (may output k different values)
— Partial synchrony

 Add assumptions on the network
 Eg, Thereis an unknown bound on the transmission delay

— Unreliable failure detectors

Unreliable failure detectors

Introduced in the beginning of 90’s by

Chandra and Toueg p

Failure detector = an oracle per node a

Oracles provide lists of hosts ’
suspected to have crashed
"" 5LOW

=> possibly false detections
<Ab

-
(W

System model

n processes ni={p,, . ..,p,}

Processes communicate by message passing
~ully connected asynchronous network
Reliable channels

Processes may crash (processes that do not
crash are called correct)

The system is enhanced with failure detectors

correct process
* Accuracy:

Properties of FD

e Strong Completeness:
— Eventually every process that crashes is permanently suspected by every

— [Eventual] Strong: [There is a time after which] correct processes are not
suspected by any correct processes

— [Eventual] Weak: [There is a time after which] some correct processes are
not suspected by any correct proc

Accuracy
Strong Weak | Eventually strong | Eventually Weak
Strong completeness Perl;fect Stré)ng O P 0S

Variantes : Eventual leader

Q) : Output only one trusted process, the
eventual leader

The leader is eventually the same correct
process for every correct process

Weakest failure detectors

* Introduced by Chandra, Hadzilacos and Toueg

* A weakest failure detector D for a problem P has
to be :

— Sufficient: with D it is possible to solve P

— Necessary: every other sufficient FD D’ is stronger

t
() anc

han D (D’ can emulate D)

0S are the weakest FD to solve consensus

Wit

N a majority of correct processes (eg. Paxos)

=> () and 0S are equivalent

13

Consensus on weakest FD

* Paxos
(“prepare”, (1,1))

(“accept”, (1,1) ,v)

e ——_

(“accept”, (1,1) ,v))

[decidM

14

Some weakest FD results

Problems

k-set set Eventual
Consensus .
Models agreement agreement consistency
Shared Q k-anti-Q anti-Q)
memory [LH94] [GKO9] [Z10]
Q

Message (Q,2) , L

passing [DFG10] ' [DFGTO08] [DKGPS15]

Implementation : Fault-tolerant
Architecture

Fault tolerant application (by active replication)

Middleware <

Java Virtual Machine (UDP, IP multicast)

Operating System

Hardware

Implementation of FDs

Consensus

_

\

Partial synchronous links

4 \

Process

.

Asynchronous links

17

Additional assumptions

* Assumptions on transmission delay A and relative
process speed 6
e Partial synchrony [DLS88] timer approach
1. Either A (0) is known but holds only eventually, or
2. A (0) exists but is not known.
* Relative speed [MMRO3] timer-free approach

— Constraints on the message pattern (message delivery
order)

— e.g., some processes always response among the first
ones

Limits of current implementations

 Many implementations of FD target static systems
— Membership and topology are known

* Scalability

Distributed systems are more and
more dynamic

 |[n 2021, mobile devices will account for a half of
global internet traffic

2016
26% CAGR 2021
2016-2021 [N \

Other (0.04%, 0.03%)
L]

200 W Tablets (7%

PCs (56%, 28%)
150 BTVs (16%, 19%)

B Non-Smartphones (0.2%, 0.1%)

—
|
100
— m Smartphones 17/)
. . l mM2M (3/‘
- i R B

2016 2017 2018 2019 2020 2021

Figures (n) refer to 2016, 2021 device share.
Source: Cisco VNI Global IP Traffic Forecast, 2016-2021.

Exabytes
per month

20

Edge computing and loT emerging

Gartner Hype Cycle for Emerging Technologies, 2017

Expectations

| Connected Home

‘Deep Learning
Machine Learning
Autonomous Vehicles
Nanotube Electronics
Cognitive Computing
Blockchain

SmartRobots .\

Edge Computing g5

Augmented Data .
Discovery B

Commercial UAVS (Drones)
Smart Workspace ()

Conversational

Brain-Computer User Interfaces Cognitive Expert Advisors

Interface Volumetric
Quantum —— Displays
Computing Digital Twin

Serverless
PaaS

5G

Human
Augmentation

Neuromorphic
Hardware

Enterprise Taxonomy

Deep Reinforcement
Learning Software-Defined
Artificial General Security
Intelligence

4D Printing

Augmented

Reality
Smart Dust
. Peak of
Innovation Inflated Trough of
Trigger Expectations Disillusionment

and Ontology Management

Virtual Reality

Slope of Enlightenment

Plateau will be reached in:
© less than 2 years
@ 2to5years

@ 5to10years
/\ more than 10 years

As of July 2017

Plateau of
Productivity

Time

21

New distributed architectures

Clouds

Datacenters Remote datacenters

Gateways

Egde and local datacenters

Highly dynamic networks

PC, Smart loT
devices, Sensors, Tags

22

Features of large and dynamic distributed
systems

Asynchronous network
— No bound on transmission delays

Huge number of resources
— >1M nodes

Dynamicity

— Churn: Permanent arrival and leave of nodes

— Mobility: Devices, virtual machines ... can move or migrate
— High failure rate, failure = common event

“Chaotic” systems with no global state

Models for dynamic systems

 Toward more dynamics : Infinite arrival
models

— Processes can be up or down

— The number of up processes in any interval of
time is upperly bounded by a known constant C

* Dynamic networks : dynamic graphs

Graph Representation

¢ Sequence Based [B. Bui-Xuan, A. Ferreira, A. Jarry, JFCS 2003]

P S

g = GOJG1;GZ,G3,...GI,..., | €N

[A. Casteigts, P. Flocchini, W.

¢ T|me Vd ry|ng graphS (TVG) Quattrociocchi, N. Santoro, 2012]

= (V, E), lifetime T

» Presence function p: Ex 7 - {0,1}

» + other functions (latency, node presence, .

© A. Casteigts 25

TVG: Basic Properties

 Temporal path (a.k.a Journey), e.qg., a ~ e
a~* b~* co* d~* except el

¢] ¥ JuEeV VYveE V u~v

¢« *a1 YuEeV dveVu~v

o ¥ % YuveEVuav

26

TVG: Classes

P
e uy~v -Periodicjourney

. ugv - Bounded journey

R :
* U~V -Recurrentjourney

What assumption for what problems ? @ casteigts

Edge/Path recurrence no recurrence

4
v
A

Fastest broadcast

Shortest broadcast

Ring exploration .
g &% Population

protocols

Speed up for Bounded “Static” “Static”

some problems broadcast broadcast routing
(by a factor T)

27

Eventual Leader Election
In Dynamic Environments

Luciana Arantes?, Fabiola Greve?, Véronique
Simon?!, and Pierre Sens!

LIP6, Inria, Francel
Federal University of Bahia (UFBA), Brazil 2

Eventual leader election
(§2 : omega failure detector)

* The 2 failure detector satisfies (“eventual leader election”):

— there is a time after which every correct process always trusts the same
correct process

Q=p, ii ‘ {) correct

‘ crashed
@ ®-

o-r: @

29

Context

Dynamic self-organized systems

— Multi-hop networks (e.g. wireless ad-hoc networks)
* broadcast /receive messages to/from neighbors within transmission
range

Communication

— Channels are fair-lossy

— there is no message duplication, modification or creation
The system is asynchronous

— There are no assumptions on the relative speed of processes nor on
message transfer delays.

Failure model : crashes

The membership is unknown
— A node is not aware about the set of nhodes nor the number of them.

Nodes have partial view of the network

Dynamics of the network

 Dynamic changing topology
— join/leave of nodes,
— mobility of nodes, failure of nodes (crash)

— Finite arrival model

* The network is dynamically composed of infinite mobile nodes, but
each run consist of a finite set of n nodes.

Processes status and network connectivity

e Two sets of nodes:

— STABLE (correct): nodes eventually and % nmoodb;'e
permanently correct %
— FAULTY: nodes which crash , P " %

7 Sta b\Ie
: node
Transmission ™ \‘
range ks

* Network connectivity :

— Eventually, the TVG is connected over the time

* There exists a journey between all stable nodes at
any time

R
* Network recurrent connectivity (class *~ *)

32

An Eventual Leader Election Algorithm

Principle

— Election of a leader process based on punishment
* Round counter to control the freshness of the information

— Periodic local query-response exchange

* Wait for a responses
— If g is locally known by p, has not moved, and does not respond

to a query of p among a., first responses, q is punished by p.

TS A |
ATALY,

o, gnot punished

- fi+1

Neighborhood

g not punished Waiting for o, responses

g punished

Implementation of 2 on dynamic networks

 Each node maintains 3 sets:
— local_known: the current knowledge about its neighborhood

— global_known: the current knowledge about the membership of the
system

— punish: a set of tuples <punish counter, node id>

leader: the process with the smallest counter in punish set

e Diffusion of information over the network by p:

— p’s current round counter
— set of processes punished by p
— current knowledge of p about the membership of the system

Additional properties

e Stable Termination Property (SatP):

Each QUERY must be received by at least one stable and known
node

Necessary for the diffusion of the information

Stabilized Responsiveness Property (SRP):

There exists a time t after which all nodes of p 's neighborhood
receive, to every of their queries, a response from p which is
always among the first responses

SRP should hold for at least one stable known node
(the eventual leader)

35

Leader Election: Sending of Query

Task T1: [Punishment]

Repeat forever
Wait until |recvfrom;| > «;
If Vp; : (—,p;) € local_known; A p; & recvfrom; AN MaxKnown(p;) =*

then
If (0,p;) € punish; then
Cmin < minc : (¢,p) € punish;,p # p;

replace in punish; (0,p;) by (Cmin + 1,p;)
Else
| replace in punish; (v.p;) by (v+1.p;)

recv from; < ()
mid; <~ mid; + 1
broadcast QUERY (mid;, punish;, global_known;)

End repeat

punishment

* - p, is a neighbor of p,
- p; does not answer to p;,
- p; is not suspected to have moved

36 36

Reception of Query and Response;
Invocation of the Leader

Task T2: [Response]

upon reception of RESPONSE (mid;,punish;, global_known;) from p;
UpdateState(mid;, punish;, global _known;, p;)*
recv from; < recvfrom; U {p;}

Task T3 [Query]
upon reception of QUERY (mid;, punish;,global_known;) from p;

UpdateState(mid;, punish;, global_known;, p;)*
send RESPONSE (mid;, punish;, global_known;) to p;

Task T4 [Leader Election]

upon the invocation of leader()
*

return ! such that (c¢,l) = Min(punish;)

*update of p,’s state about punishment, membership, and p;,’s neighborhood with more recent
information : keeps the tuples with the greatest counter.

*process with the smallest counter

37

37

Exemple: Mobility of nodes

global_known;

punished,

local_known,

<1,2>,<1,3>,<2,4>

<0,1>,<0,2>,<0,3>,<3,4>

<1,1>,<1,2>,<1,3>,<1,4>

@ 3

¢,

x:<x,4> in local_known, < y:<y,4> in global_known,

- 1 stops punishing 4

<2,4>

® 5

Open issues : models

 Minimal condition in terms of time /
connectivity / dynamicity to solve agreement

problems

* Unified realistic model for distributed systems

— Dynamicity, heterogeneity of nodes

* Adversary models (omission, byzantine
failures)

Open issues: distributed algorithms

* Non deterministic algorithms

* Probabilistic algorithms / Indulgent
algorithms

* Ensure safety properties (eg. agreement)
* Relax liveness properties (termination)

Open issues: experiments

* Need of testbeds to validate algorithms (Silecs
initiative)

* Realistic mobility patterns

* Reproducible experiments

Concluding remarks

Distributed systems are dynamic

Failure detection a key component to build reliable
application

Unreliable FDs

— A clear extension of asynchronous model
— A tool to build services in asynchronous network

